Electromagnetic effects in the pion dispersion relation at finite temperature
نویسندگان
چکیده
منابع مشابه
Density effects on the pion dispersion relation at finite temperature
We study the behavior of the pion dispersion relation in a pion medium at finite density and temperature, introducing a chemical potential to describe the finite pion number density. Such description is particularly important during the hadronic phase of a relativistic heavy-ion collision, between chemical and thermal freeze-out, where the pion number changing processes, driven by the strong in...
متن کاملPion electromagnetic form factor at finite temperature.
Temperature effects on the electromagnetic couplings of pions in hot hadronic matter are studied with an effective chiral Lagrangian. We show that the Ward-Takahashi identity is satisfied at non-zero temperature in the soft pion limit. The in-medium electromagnetic form factor of the pion is obtained in the time-like region and shown to be reduced in magnitude, especially near the vector-meson ...
متن کاملElectromagnetic pion form factor at finite temperature
The electromagnetic form factor of the pion in the space-like region, and at finite temperature, Fπ(Q 2, T ), is obtained from a QCD Finite Energy Sum Rule. The form factor decreases with increasing T, and vanishes at some critical temperature, where the pion radius diverges. This divergence may be interpreted as a signal for quark deconfinement. John Simon Guggenheim Fellow 1994-1995 The possi...
متن کاملPion-Nucleon Coupling at Finite Temperature
The pion nucleon vertex function at finite temperature is studied in the framework of: (a) the thermal (linear) sigma model to leading (one-loop) order, and (b) a thermal QCD-Finite Energy Sum Rule. Results from both methods indicate that the strength of the pion-nucleon coupling decreases with increasing T , vanishing at a critical temperature. The associated mean-square radius is a monotonica...
متن کاملCottingham formula and the pion electromagnetic mass difference at finite temperature
We generalize the Cottingham formula at finite (T 6= 0) temperature by using the imaginary time formalism. The Cottingham formula gives the theoretical framework to compute the electromagnetic mass differences of the hadrons using a dispersion relation approach. It can be also used in other contexts, such as non leptonic weak decays, and its generalization to finite temperature might be useful ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review D
سال: 2014
ISSN: 1550-7998,1550-2368
DOI: 10.1103/physrevd.89.116009